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Consider the problem of imitation learning within a discrete MDP with horizon
T and an expert policy π∗. We gather expert demonstrations from π∗ and fit
an imitation policy πθ to these trajectories so that

Epπ∗(s)πθ(a ≠ π∗(s) ∣ s) =
1

T

T

∑
t=1

Epπ∗(st)πθ(at ≠ π∗(st) ∣ st) ≤ ϵ,

i.e., the expected likelihood that the learned policy πθ disagrees with the
expert π∗ within the training distribution pπ∗ of states drawn from random
expert trajectories is at most ϵ.

For convenience, the notation pπ(st) indicates the state distribution under π
at time step t while p(s) indicates the state marginal of π across time steps,
unless indicated otherwise.

1. Show that ∑st
|pπθ

(st) − pπ∗(st)| ≤ 2Tϵ.

Hint 1: In lecture, we showed a similar inequality under the stronger
assumption πθ(st ≠ π∗(st) ∣ st) ≤ ϵ for every st ∈ supp(pπ∗). Try converting the
inequality above into an expectation over pπ∗.

Hint 2: Use the union bound inequality: for a set of events Ei,
Pr [⋃iEi] ≤ ∑i Pr[Ei].

Solution:

Let Et be the event that the learned policy πθ makes an error at time
step t; that is, πθ takes an action different from the expert policy π∗ at
time step t. Mathematically,

Et = {πθ(at ≠ π∗(st)|st)}.

The probability of at least one error up to time step t − 1 is bounded by
the sum of the probabilities of each error event:

Pr[
t−1

⋃
k=1

Ek] ≤
t−1

∑
k=1

Pr[Ek].

Note:



J(π) =
T

∑
t=1

Epπ(st)[r(st)].

(a) Show that J(π∗) − J(πθ) = O(Tϵ) when the reward only depends on the last
state, i.e., r(st) = 0 for all t < T.

Solution:

J(π∗) − J(πθ) = Epπ∗(sT )[r(sT )] − Epπθ(sT )[r(sT )]

Since |r(sT )| ≤ Rmax, we have:

|J(π∗) − J(πθ)| ≤ sup
sT

|r(sT )|dTV (pπ∗ , pπθ
) ≤ RmaxdTV (pπ∗ , pπθ

) = Rmax ⋅ Tϵ

Note that:

The expected error at Time t is:

Epπ∗(st)πθ(at ≠ π∗(st) ∣ st) = δt

By definition, 1
T ∑T

t=1 δt ≤ ϵ. Therefore, the total expected errors up to
time step t − 1 is bounded by:

t−1

∑
k=1

Epπ∗(st)πθ(at ≠ π∗(st) ∣ st) ≤
t−1

∑
k=1

δk ≤ (t − 1)ϵ.

By the total variation distance, we have:

∑
st

|pπθ
(st) − pπ∗(st)| ≤ 2Pr[

t−1

⋃
k=1

Ek] ≤ 2(t − 1)ϵ.

Note:

Since t ≤ T, we have:

∑
st

|pπθ
(st) − pπ∗(st)| ≤ 2Tϵ.

The state distribution at time t under policy πθ is determined by the
sequence of actions taken from time 1 to t − 1.

The total variation distance is defined as dTV (p, q) = 1
2 ∑s |p(s) − q(s)|.

Errors lead to a difference in the state distribution (dTV (p, q)).

2. Consider the expected return of the learned policy πθ for a state-
dependent reward r(st), where we assume the reward is bounded with
|r(st)| ≤ Rmax:

For any bounded function f, the difference in expectation under two
distributions is bounded by: |Ep[f] − Eq[f]| ≤ supx |f(x)|dTV (p, q), where supx



(b) Show that J(π∗) − J(πθ) = O(T 2ϵ) for an arbitrary reward.

Solution:

J(π∗) − J(πθ) =
T

∑
t=1

(Epπ∗(st)[r(st)] − Epπθ(st)[r(st)]) = Rmax

T

∑
t=1

∑
st

|pπ∗(st) − pπθ
(st)| ≤ Rmax

T

∑
t=1

2(t

Note:

Knowledge Points

Mathematical Formulas

Moral Behind the Questions

denotes the supremum (least upper bound) over all possible values of x.
In other words, supx |f(x)| is the maximum absolute value that the
function f can take.

∑T
t=1 2(t − 1) is the sum of an arithmetic series. Let k = t − 1, then

∑T
t=1 2(t − 1) = 2 ∑T−1

k=0 k = 2 ⋅
(T−1)T

2 = T 2 − T.

Union bound: Pr [⋃iEi] ≤ ∑i Pr[Ei].
When considering errors up to time t − 1, it is essential to sum the
error probabilities up to that point, not including time t, because
the state at time t depends on actions up to time t − 1.

Markov's Inequality: Pr[X ≥ t] ≤
E[X]
t .

Total variation distance: dTV (p, q) = 1
2

∑s |p(s) − q(s)|.
For any bounded function f, |Ep[f] − Eq[f]| ≤ supx |f(x)|dTV (p, q).
Sum of an arithmetic series: ∑n

k=0 k = n(n+1)
2

.

Error propagation in sequential decision making:
Even small discrepancies between a learned policy and an expert
policy can lead to significant differences in state distributions over
time.
Errors made at early time steps can propagate and amplify as the
agent continues to make decisions, especially in sequential settings
like MDPs.


